AEF1/MPR25 is implicated in RNA editing of plastid atpF and mitochondrial nad5, and also promotes atpF splicing in Arabidopsis and rice.

نویسندگان

  • Aaron Yap
  • Peter Kindgren
  • Catherine Colas des Francs-Small
  • Tomohiko Kazama
  • Sandra K Tanz
  • Kinya Toriyama
  • Ian Small
چکیده

RNA editing is an essential mechanism that modifies target cytidines to uridine in both mitochondrial and plastid mRNA. Target sites are recognized by pentatricopeptide repeat (PPR) proteins. Using bioinformatics predictions based on the code describing sequence recognition by PPR proteins, we have identified an Arabidopsis editing factor required for editing of atpF in plastids. A loss-of-function mutation in ATPF EDITING FACTOR 1 (AEF1, AT3G22150) results in severe variegation, presumably due to decreased plastid ATP synthase levels. Loss of editing at the atpF site is coupled with a large decrease in splicing of the atpF transcript, even though the editing site is within an exon and 53 nucleotides distant from the splice site. The rice orthologue of AEF1, MPR25, has been reported to be required for editing of a site in mitochondrial nad5 transcripts, and we confirm that editing of the same site is affected in the Arabidopsis aef1 mutant. We also show that splicing of chloroplast atpF transcripts is affected in the rice mpr25 mutant. AEF1 is thus highly unusual for an RNA editing specificity factor in that it has functions in both organelles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A member of the Whirly family is a multifunctional RNA- and DNA-binding protein that is essential for chloroplast biogenesis

'Whirly' proteins comprise a plant-specific protein family whose members have been described as DNA-binding proteins that influence nuclear transcription and telomere maintenance, and that associate with nucleoids in chloroplasts and mitochondria. We identified the maize WHY1 ortholog among proteins that coimmunoprecipitate with CRS1, which promotes the splicing of the chloroplast atpF group II...

متن کامل

Correct splicing of a group II intron from a chimeric reporter gene transcript in tobacco plastids

An in vivo test system was developed to study group II intron splicing in higher plant chloroplasts. The chimeric reporter gene uidA was constructed by translational fusion of an intron-containing segment of the plastid atpF gene with the coding region of a plastid uidA reporter gene. The chimeric uidA gene was inserted into the tobacco plastid genome by the biolistic transformation procedure u...

متن کامل

CRS1, a chloroplast group II intron splicing factor, promotes intron folding through specific interactions with two intron domains.

Group II introns are ribozymes that catalyze a splicing reaction with the same chemical steps as spliceosome-mediated splicing. Many group II introns have lost the capacity to self-splice while acquiring compensatory interactions with host-derived protein cofactors. Degenerate group II introns are particularly abundant in the organellar genomes of plants, where their requirement for nuclear-enc...

متن کامل

Evaluation of multilocus marker efficacy for delineating mangrove species of West Coast India

The plant DNA barcoding is a complex and requires more than one marker(s) as compared to animal barcoding. Mangroves are diverse estuarine ecosystem prevalent in the tropical and subtropical zone, but anthropogenic activity turned them into the vulnerable ecosystem. There is a need to build a molecular reference library of mangrove plant species based on molecular barcode marker along with morp...

متن کامل

WHITE STRIPE LEAF4 Encodes a Novel P-Type PPR Protein Required for Chloroplast Biogenesis during Early Leaf Development

Pentatricopeptide repeat (PPR) proteins comprise a large family in higher plants and perform diverse functions in organellar RNA metabolism. Despite the rice genome encodes 477 PRR proteins, the regulatory effects of PRR proteins on chloroplast development remains unknown. In this study, we report the functional characterization of the rice white stripe leaf4 (wsl4) mutant. The wsl4 mutant deve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 81 5  شماره 

صفحات  -

تاریخ انتشار 2015